Disaster & Social Security
Bangladesh faces some of the highest disaster risk levels in the world, ranked 22nd out of 191 countries by the 2019 Inform Risk Index (link), Bangladesh has extremely high exposure to flooding (ranked 1st in the world), including, riverine, flash, and coastal, as well as high exposure to tropical cyclones and their associated hazards (ranked 19th) and drought (ranked 47th). Disaster risk in Bangladesh is also driven by its social vulnerability. Bangladesh’s vulnerability ranking (37th) is driven by its high levels of socioeconomic deprivation.
The National Adaptation Plan (NAP) provides an overall view of the links between climate and natural disaster. The major challenges related to disaster in Bangladesh are:
- Curse of poverty, food insecurity and malnutrition
- Degradation of natural recourses
- Low agricultural productivity and limited modernization
- Weak research extension linkage and technology delivery
- High post-harvest losses
- Problems of market linkages and value chains,
- Scarcity of availability of agriculture labour
- Farm mechanization
- Food quality and safety problem
- Inadequate institutional credit
- Inadequate availability of quality seeds to the farmers
- Increased environmental shocks and livelihood risk
Overview of Disaster
contains modified Copernicus Sentinel data (2022), processed by ESA, CC BY-SA 3.0 IGO
Sylhet flood in June, 2022
Bangladesh is no stranger to heavy rain, but this year the northeast region is being subjected to the highest rainfall it has seen in more than a century. Days of heavy rain at the beginning of monsoon season have caused widespread flooding, leaving millions stranded and vast areas affected. This flooding has come shortly after a pre-monsoon flood that badly affected the same region a month ago. Europe’s Copernicus Sentinel-1 mission is being used to map the extent of the floods. The satellite radar’s ability to ‘see’ through clouds and rain, and in darkness, makes it particularly useful for monitoring floods. The animation uses Sentinel-1 images that were acquired on 4 May, 16 May, 28 May, 9 June and 21 June, to show how the flood is affecting the region.
contains modified Copernicus Sentinel data (2022), processed by ESA, CC BY-SA 3.0 IGO
Climate Stress area of Bangladesh
Bangladesh is no stranger to heavy rain, but this year the northeast region is being subjected to the highest rainfall it has seen in more than a century. Days of heavy rain at the beginning of monsoon season have caused widespread flooding, leaving millions stranded and vast areas affected. This flooding has come shortly after a pre-monsoon flood that badly affected the same region a month ago. Europe’s Copernicus Sentinel-1 mission is being used to map the extent of the floods. The satellite radar’s ability to ‘see’ through clouds and rain, and in darkness, makes it particularly useful for monitoring floods. The animation uses Sentinel-1 images that were acquired on 4 May, 16 May, 28 May, 9 June and 21 June, to show how the flood is affecting the region.
Challanges in Disaster Management
All the successes, described above, could be short lived over a longer period of time. After achieving lower middle income country status, the challenge is not achieving food security but to sustain food security over medium and long term. Bangladesh aspires to become an upper middle income country and then on to become a developed country by 2041. This time frame unfortunately also coincides with onset of sea level rise potentially inundating parts of Bangladesh. Can Bangladesh sustain food security at that time? If not, will that threaten its aspiration to become developed country? The main challenges to achieving and sustaining food security over the longer term include:
- Floods
- Drought
- River Bank Erosion
- Lightning
- Salinity
- Sea Level Rise & Storm Surge
Expanding urbanization threatens food security
Bangladesh experienced faster urbanization than South Asia as a whole between 2000 and 2010. Over that period, the share of its population living in officially classified urban settlements increased by 1.69% per year. World Urbanization Prospects estimated that urban population will be 56% of total population of Bangladesh by 2050. Bangladesh's expanding urban populations presents it with a considerable affordable housing challenge. In the best case scenario in which urban population density remains constant, meeting this challenge will require expanding the amount of developable urban land by just over 7,000 km2 or almost 45% - between 2010 and 2050 (World Bank, 2015). This will provide extreme stress on lands available for productive economic uses and threaten achieving food security.
Climate change and natural hazards will likely continue to worsen
Bangladesh ranks first in the 2014 Climate Change Vulnerability Index and it will likely suffer more from climate change by 2025. than any other country (Maplecroft, 2014). Rainfall is expected to increase by 10% to 15% during the monsoon seasons by 2030 and 27% by 2075; rising sea level is expected to inundate 120,000 km2 by 2050; 14% more of the country may become extremely prone to floods by 2030; cyclones in the Bay of Bengal will occur more frequently due to increasing temperature, and the peak intensity of cyclones may increase by 5% to 10% (FPMU, 2013). Coastal salinity problems will likely worsen as changing rain patterns reduce the amount of dry season water supply from upstream river sources. Overall, crop production might be reduced by 30% by the end of the century, rice production could fall by 8%, and wheat production by 32% by 2050 (FPMU, 2013). Winter crop production would be seriously hampered due to a warmer and drier environment during non-monsoon seasons, while moisture stress might force farmers to reduce the area under irrigated rice cultivation.
Loss of agricultural land
Bangladesh is losing agriculture land at a rate of 0.5% per year due to various factors including urban encroachment of agriculture land, road infrastructure, water logging, depletion of groundwater and soil fertility, erosion, and salinity (Hasan, 2013). In the last three decades about 170,000 ha of agriculture land has been degraded by increased salinity (FAO, 2012). Soil fertility degradation results from imbalanced fertilizer use ( overuse of subsidized nitrogen fertilizers), absence of micronutrient application, less use of manure for crops and more for fuel, and cropping intensification combined with the increase of mono culture rice without rotation. River bank erosion accounts for about 40% of land loss on about 1,200 km of riverbanks (primarily the Ganges, Jamuna, and Padma Rivers) that are seriously affected as topsoil is washed away and replaced by sand (Hasan, 2013). This problem is expected to intensify with increased climate change-induced sea level rise. This significant land loss when combined with population growth explains why the size of cultivated area per farm has decreased from 0.81 to 0.51 ha between 1984 and 2008 (FPMU, 2013)..
Uncertainty in water availability from upstream
As Bangladesh is located in the low-lying delta of the Ganges- the Brahmaputra- the Meghna basin, upstream infrastructural developments both in India and possibly in China are expected to have a notable impact on the dry season flow in the country. Of particular interest for Bangladesh are the Indian proposals to construct 16 barrages on the Ganges River and the plans to divert water from the Ganges and the Brahmaputra rivers towards the south of India. In addition, India is planning to construct the Tipaimukh dam in the northeastern part of the country. These will impact the water availability in Bangladesh as well as the ecological condition of the rivers. Fisheries and agriculture activities within Bangladesh are expected to be impacted by these developments.
Uncertainty in water availability from upstream
As Bangladesh is located in the low-lying delta of the Ganges- the Brahmaputra- the Meghna basin, upstream infrastructural developments both in India and possibly in China are expected to have a notable impact on the dry season flow in the country. Of particular interest for Bangladesh are the Indian proposals to construct 16 barrages on the Ganges River and the plans to divert water from the Ganges and the Brahmaputra rivers towards the south of India. In addition, India is planning to construct the Tipaimukh dam in the northeastern part of the country. These will impact the water availability in Bangladesh as well as the ecological condition of the rivers. Fisheries and agriculture activities within Bangladesh are expected to be impacted by these developments.
Uncertainty in water availability from upstream
As Bangladesh is located in the low-lying delta of the Ganges- the Brahmaputra- the Meghna basin, upstream infrastructural developments both in India and possibly in China are expected to have a notable impact on the dry season flow in the country. Of particular interest for Bangladesh are the Indian proposals to construct 16 barrages on the Ganges River and the plans to divert water from the Ganges and the Brahmaputra rivers towards the south of India. In addition, India is planning to construct the Tipaimukh dam in the northeastern part of the country. These will impact the water availability in Bangladesh as well as the ecological condition of the rivers. Fisheries and agriculture activities within Bangladesh are expected to be impacted by these developments.
Uncertainty in water availability from upstream
As Bangladesh is located in the low-lying delta of the Ganges- the Brahmaputra- the Meghna basin, upstream infrastructural developments both in India and possibly in China are expected to have a notable impact on the dry season flow in the country. Of particular interest for Bangladesh are the Indian proposals to construct 16 barrages on the Ganges River and the plans to divert water from the Ganges and the Brahmaputra rivers towards the south of India. In addition, India is planning to construct the Tipaimukh dam in the northeastern part of the country. These will impact the water availability in Bangladesh as well as the ecological condition of the rivers. Fisheries and agriculture activities within Bangladesh are expected to be impacted by these developments.
Highlited Approach
In Ohirkunji village, Barlekha Upazila, Moulvibazar, Kunjolota Biswas, age 38, has become a successful farmer using the unique (sack gardens) method. This method can produce sufficient vegetables for herself, selling the rest for nominal profit. People living in the haor regions are compelled to receive a potential strategy such as sack farming to promote their living standards as the intensity of excessive rainfall causing flood has increased over the years, and climate-induced disaster has already impacted the livelihoods of the local community
Sack Garden
Networking Lead
Exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa.
Stepha Kruse
Design Lead
Potential Impact and Adaptation Option
For Disaster
- Potential Impact & Risk
- Adaptation Intervention
- Adaptation Measures
Climate Signal and Hazards | Potential Impacts | Risk Level | |
---|---|---|---|
SSP1-2.6 | SSP5-8.5 | ||
Excessive Rainfall |
|
++ | +++ |
Extreme Heat |
|
++ | +++ |
Cold spell |
|
+++ | +++ |
Frequent River Flood |
|
+ | ++ |
Early or Frequent Flash Floods |
|
++ | +++ |
Severe Drought/Water Scarcity |
|
++ | ++ |
Frequent Lightening |
|
++ | ++ |
Salinity Increase |
|
++ | +++ |
Frequent Cyclone and Storm Surge |
|
+++ | +++ |
Sea Level Rise |
|
++ | +++ |
Code | Interventions | Domain | NAP Strategy | Priority | Cost (Billion BDT) | Private Sector Investment Potential |
---|---|---|---|---|---|---|
CSA1 | Extension of climate smart technologies for increasing irrigation water use efficiency | SWM | SEE | CHT | FPE | HFF | DBA CBL | NNW | CHI | URB | S1.1, S1.2, S1.3, S2.1, S2.2, S2.3 | High | 313 | 10% |
CSA2 | Augmentation of surface water for multipurpose use and irrigation | SWM | SEE | CHT | FPE | HFF | DBA CBL | NNW | CHI | URB | S2.1, S2.2, S2.4, S1.1, S1.2, S1.3, S4.1, S4.2 | High | 313 | 10% |
CSA3 | Extension of stress, pest and diseases tolerant rice and non-rice cropst | SWM | SEE | CHT | FPE | HFF | DBA CBL | NNW | CHI | S2.1, S2.4, S1.3, S4.1, S4.2 | High | 846 | 5% |
CSA4 | Introduction and up-scaling of innovative and indigenous agriculture | SWM | SEE | CHT | FPE | HFF | DBA CBL | NNW | CHI | URB | S2.1, S2.4, S1.3, S4.1, S4.2 | High | 20 | 5% |
CSA5 | Crop diversification/intensification for natural resources optimization and reducing stresses of existing and potential climate stress based on climate sensitive crop zoning | SWM | SEE | CHT | FPE | HFF | DBA CBL | NNW | CHI | URB | S2.1, S2.4, S1.3, S4.1, S4. | Moderate | 15 | 20% |
CSA6 | Farm modernization/ mechanization to reduce climate vulnerability | SWM | SEE | CHT | FPE | HFF | DBA CBL | NNW | CHI | S2.1, S2.3, S2.4, S1.3 | Moderate | 15 | 5% |
CSA7 | Increase fertilizer use efficiency for enhancing the production (fertilizer deep placement, organic amendment, green manuring, leaf color charts, soil test-based fertilizer application) | SWM | SEE | CHT | FPE | HFF | DBA CBL | NNW | CHI | S2.1, S1.3, S4.1, S4.2 | High | 106 | 40% |
CSA8 | Extension of Good Agriculture Practices (GAP), Modern Agriculture Technology (MATH) and Sloping Agricultural Land Technology (SALT) | SWM | SEE | CHT | FPE | HFF | DBA CBL | NNW | CHI | S2.1, S2.4, S1.3, S4.1, S4.2, S4.3 | High | 103 | 10% |
CSA9 | Strengthening and development of impact based Early Warning System and Data Management for Agriculture | Nationwide | S2.1, S2.2, S2.3, S1.3 | High | 25 | 5% |
CSA10 | Improvement of storage or post-harvest facilities, transport, communication and e-commerce based market facilities for agricultural product | Nationwide | S2.1, S2.4, S1.3, S4.1, S4.2 | High | 145 | 20% |
CSA11 | Development of agro-food processing industries based on climate-sensitive crop zoning | Nationwide | S2.3, S1.3 | High | 52 | 40% |
CSA12 | Development of e-commerce and engagement of gender and youth for e-commerce based entrepreneurship | Nationwide | S2.1, S2.3, S1.3, S4.2 | Moderate | 11 | 20% |
WDM1: Management and timely maintenance of inside and outside of coastal polders, sea dykes, embankments and cyclone shelters in an integrated and gender sensitive way considering the sea level rise and extreme storm surge height |
---|
|